华图教育-第一公务员考试网

0432-63106111 吉林市分校
【导读】吉林华图备考:数字推理30种解题技巧

  一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。

  【例】1、4、3、1、1/5、1/36、( )

  A.1/92   B.1/124   C.1/262   D.1/343

  二、当一列数几乎都是分数时 ,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。

  【例】1/16 2/13 2/5 8/7 4 ( )

  A.19/3   B.8   C.39   D.32

  三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。

  【例】33、32、34、31、35、30、36、29、( )

  A. 33   B. 37   C. 39   D. 41

  四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。取尾数列一般具有相加取尾、相乘取尾两种形式。

  【例】6、7、3、0、3、3、6、9、5、( )

  A.4   B.3   C.2   D.1

  五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。

  【例】448、516、639、347、178、( )

  A.163   B.134   C.785   D.896

  六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。

  【例】0、9、26、65、124、( )

  A. 165   B. 193   C. 217   D. 239

  七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。

  【例】118、60、32、20、( )

  A.10   B.16   C.18   D.20

  八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。

  【例】0、6、24、60、120、( )

  A.180   B.210   C.220   D.240

  九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。

  【例】3、7、16、107、 ( )

  A.1707   B.1704   C.1086   D.1072

  十、当数列选项中有两个整数、两个小数时,答案往往是小数,且一般是通过乘除来实现的。当然如果出现了两个正数、两个负数诸如此类的标准配置时,答案也是负数。

  【例】2、13、40、61、( )

  A.46.75   B.82   C. 88.25   D.121

  十一、数字推理如果没有任何线索的话,记得要选择相对其他比较特殊的选项,譬如:正负关系、整分关系等等。

  【例】2、7、14、21、294、( )

  A.28   B.35   C.273   D.315

  十二、小数数列是整数与小数部分各自呈现规律,日期数列是年、月、日各自呈现规律,且注意临界点(月份的28、29、30或31天)。

  【例】1.01、1.02、2.03、3.05、5.08、( )

  A. 8.13   B. 8.013   C. 7.12   D. 7.012

  十三、对于图形数列,三角形、正方形、圆形等其本质都是一样的,其运算法则:加、减、乘、除、倍数和乘方。三角形数列的规律主要是:中间=(左角+右角-上角)×N、中间=(左角-右角)×上角;圆圈推理和正方形推理的运算顺序是:先观察对角线成规律,然后再观察上下半部和左右半部成规律;九宫格则是每行或每列成规律。

  十四、注意数字组合、逆推(还原)等问题中“直接代入法”的应用。

  【例】一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒百位与个位上的数的位置,则所成的新数是原数的3倍少39。求这个三位数?

  A. 196   B. 348   C. 267   D. 429

  十五、注意数学运算中命题人的基本逻辑,优先考虑是否可以排除部分干扰选项,尤其要注意正确答案往往在相似选项中。

  【例】两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3∶1,另一个瓶子中酒精与水的体积比是4∶1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?

  A.31∶9   B.7∶2   C.31∶40   D.20∶11

  十六、当题目中出现几比几、几分之几等分数时,谨记倍数关系的应用,关键是:前面的数是分子的倍数,后面的数是分母的倍数。譬如:A=B×5/13,则前面的数A是分子的倍数(即5的倍数),后面的数B是分母的倍数(即13的倍数),A与B的和A+B则是5+13=18的倍数,A与B的差A-B则是13-5=8的倍数。

  【例】某城市共有四个区,甲区人口数是全城的4/13,乙区的人口数是甲区的5/6,丙区人口数是前两区人口数的4/11,丁区比丙区多4000人,全城共有人口多少万?

  A.18.6万   B.15.6万   C.21.8万   D.22.3万

  十七、当题目中出现了好几次比例的变化时,记得特例法的应用。如果是加水,则溶液是稀释的,且减少幅度是递减的;如果是蒸发水,则溶液是变浓的,且增加幅度是递增的。

经典图书

  • 名师模块教材
  • 面试教材系列
  • 国考新大纲系列
  • 吉林省考教材
  • 华图教你赢系列
  • 热门分站
  • 热门考试
  • 热门专题
  • 热门信息
  • 热门推荐








  • 申论
  • 行测
  • 面试
  • 历年真题
  • 模拟试题
  • 时事热点

问知

模考